

Combined Single Axis Attitude Control and Energy Storage Demonstration and NASA GRC

Ralph Jansen, Peter Kascak – Univ. of Toledo Barbara Kenny – NASA GRC

August 7, 2003

Outline of Presentation

- GRC in-house flywheel technology development and facilities (Ralph Jansen)
- Single axis and energy storage control (Peter Kascak)
 - Derivation of theory
 - Simulation results
 - Experimental results
- Future Work (Ralph Jansen)

Inverter and Controls 2

GRC Flywheel Hardware Buildup

4/00 Dev 1 Delivered from **USFS** 2000

6/00 Dev 1 Mag Bearing **And Motor Electronics**

5/00 Low **Energy Flywheel** Facility at GRC at GRC

8/00 Dev 1 to 20K RPM

2/01 HSS Delivered from

11/01 **D1 CDR Review** New Rotor. T/D Bearings Motor/Gen Sensors

Jansen-D1 Design IECEC2002

10/02 D1 Assembled, levitated. and spun

2/03 **D1 & HSS** Operating In HEFF

3/02 HSS Rebuilt Sens/TD

Dever-Sensors IECEC2001

Dever-MB Control IECEC2002

Trase- H2O Cont IECEC2002

Complete

7/03 Single

Axis IPACS

http:space-power.grc.nasa.gov/ppo/flywheel/fly.html

GRC Motor Control Algorithm Development

current regulator

2) Stationary frame current regulator

Kenny-MG Control IECEC2001

regulation

2) Discharge bus voltage regulation

Kascak-Bus Regulation IECEC2001

for low speed

2) Back EMF method for high speed

Kenny-Sensorless IECEC2002

2) Bus regulation

3) Attitude control

7/03 Single **Axis IPACS**

Experimentally Demonstrated

Kascak-Simulation IECEC2002

Kenny-Torque-Submitted Kascak-Attitude-Submitted

http:space-power.grc.nasa.gov/ppo/flywheel/fly.html

Flywheel Modules

- D1 Flywheel Module
 - Rotor
 - 330 Whr Toray 4 ring rim
 - Monolithic steel hub
 - Motor/Generator
 - 1kW, 80V I-I, 2 pole Ashman Technology
 - Magnetic Bearing
 - 4 pole homopolar radial
 - 4 pole hompolar/2 axial pole combo
 - · Eddy current sensors
 - Touchdown Bearing
 - Combo/radial design allows axial growth
 - Housing
 - Vacuum

- High Speed Shaft
 - Rotor
 - 17 Whr no rim
 - Monolithic steel hub
 - Motor/Generator
 - 3kW, 220V I-I, 4 pole Ashman Technology
 - Magnetic Bearing
 - 4 pole homopolar radial
 - 4 pole hompolar/2 axial pole combo
 - Eddy current sensors
 - Touchdown Bearing
 - Redesigned for higher load
 - Housing
 - Vacuum

Power and Control Electronics

- Motor / Generator Power
 - Six switch FET inverter APT
 - 65 kHz switching frequency
 - GRC PWM board
 - DC bus filter
 - AC output filter
- Motor / Generator Control
 - dSpace control hardware
 - GRC algorithms
 - Current feedback

- Magnetic Bearing Power
 - 2 state PWM bridge
 - 30 kHz switching frequency
 - DC bus filter
 - AC output filter
- Magnetic Bearing Control
 - dSpace control hardware
 - GRC algorithms
 - Eddy current position sensor feedback

Dual Flywheel Test Facility (HEFF)

Flywheel modules

Control Room

Single Axis Attitude Control and Energy Storage Demonstration

- Theoretical derivations
 - Electrical (power and DC bus regulation)
 - Mechanical (attitude control)
- Experimental results
 - Open loop torque control
 - Closed loop position control

Control Configuration

Inverter and Controls 2

Mode	<u>Current</u>	DC Bus Voltage
Full Sun "Charge"	$I_{\text{S/a}} = I_{\text{load}} + I_{\text{charge}}^*$ $I_{\text{flywheel}} = I_{\text{charge}}^*$	Regulated by solar array system
Partial Sun "Charge Reduction"	$I_{load} + I_{charge}^* > I_{s/a} > 0$ $I_{charge}^* > I_{flywheel}$	Regulated by flywheel system
Eclipse "Discharge"	$I_{load} = -I_{flywheel}$ $I_{flywheel} < 0$	Regulated by flywheel system

Power System Control

- Achieved through control of motor currents
- Based on power balance
 - Steady state assumption
 - Neglects inverter losses
 - AC power ≈ DC power

$$I_{flywheel,m} pprox rac{3\omega_{r,m}\lambda_{af,m}}{2V_{DC}}i_{qs,m}^{r}$$

- \bullet $I_{flywheel,\;m}$ is the DC side current associated with the m^{th} flywheel.
- $\bullet \omega_{r,m}$ is the mth flywheel speed.
- • $\lambda_{af, m}$ is the back emf constant of the mth flywheel.
- ${}^{ullet} V_{dc}$ is the DC bus voltage.
- •i^r_{qs,m} is the motor control current for the mth flywheel.

Motor Torque Control

- Also achieved through control of motor current.
- Based on field orientation
 - Motor torque is proportional to motor control current:

$$T_{e,m} = \frac{3}{2} \frac{P}{2} \lambda_{af} i_{qs,m}^r$$

Mechanical Schematic

Free Body Diagram

Equations of Motion

$$J\dot{\theta}_0 + c\dot{\theta}_0 + k\theta_0 = \sum T$$

$$\sum T = T_p = -T_{m1} - T_{m2}$$

Torque and Power Coordination

•
$$T_p = -T_{m1} - T_{m2} = -ai_{qs1}^r - bi_{qs2}^r$$

$$a = \frac{3}{2} \frac{P_1}{2} \lambda_{af1}$$
 $b = \frac{3}{2} \frac{P_2}{2} \lambda_{af2}$

•
$$I_{\mathit{flywheel}} = I_{\mathit{flywheel},1} + I_{\mathit{flywheel},2} = ci_{\mathit{qs1}}^r + di_{\mathit{qs2}}^r$$

$$c = \frac{3\omega_{r1}\lambda_{af1}}{2V_{DC}} \qquad d = \frac{3\omega_{r2}\lambda_{af2}}{2V_{DC}}$$

Control Solution

Motor 1 control current:

$$i_{qs1}^{r} = \frac{bI_{flywheel} + dT_{p}}{cb - da}$$

Motor 2 control current:

$$i_{qs2}^r = \frac{T_p + ai_{qs1}^r}{-b}$$

- T_D is the desired table torque
 - Either determined from a closed loop position controller or commanded in open loop fashion
- I_{flywheel} is the commanded charging current in charge mode and the load current during discharge mode.

Experimental Results

Open loop torque control

Power Regulation Mode	Commanded Values	Load
Test 1: Charge → Discharge	$I^*_{charge} = 1.7 a$ $V^*_{dc} = 120v$ $T^*_{p} = 0$	$300 \ \Omega \rightarrow 120 \ \Omega$
Test2: Charge	$I^*_{charge} = 1.7 a$ $T^*_{p} = 0 \rightarrow -0.5$ $\rightarrow 0$	300 Ω
Test 3: Discharge	$V^*_{dc} = 120v$ $T^*_{p} = 0 \rightarrow +0.5$ $\rightarrow 0$	300 Ω

flywheel

 $\int R_{load}$

load

+

Test 1: Charge to discharge mode with a constant torque command

DC Currents

DC bus voltage

Flywheel speeds

Table torque

Test 2: Charge mode with a step change in torque command

Flywheel speeds

Table torque

D1 and HSS currents for Test 2

HSS motor current

D1 motor current

D1 motor current close-up

NASA

Test 3: Discharge mode with a step change in torque command

DC Currents

DC bus voltage

Flywheel speeds

Table torque

Additional Test 3 results

Initial Closed Position Loop Results

- Closed loop position control-- encoder on air table for position feedback.
- Table torque command provided by PID regulation on table angle (position).
- Control and power cables add a spring constant to the system.

Power Regulation Mode	Commanded Values	Load
Charge → Discharge	I [*] _{charge} = 1.4 a V [*] _{dc} = 120v θ [*] _p =1° to +.1°	300 Ω

Closed Position Loop Results

Glenn Research Center

DC Currents

DC bus voltage

Flywheel speeds

Table position

Glenn Research Center

GRC Future Work

Conclusions

 GRC has experimentally demonstrated a single-axis integrated attitude control and energy storage system.

 Simultaneous power bus regulation and attitude control was demonstrated in charge and discharge modes with load, source, and torque command steps.

